2023高考数学复习第1篇“不但要会埋头拉车,还要会抬头看路”是我对高考数学复习的一贯见解。高考是一场成王败寇的残酷竞争,它是公平的也是不公平的,说高考公平是因为所有人都将面对同样的时间、知识、试卷;下面是小编为大家整理的高考数学复习汇编11篇,供大家参考。
2023高考数学复习 第1篇
“不但要会埋头拉车,还要会抬头看路”是我对高考数学复习的一贯见解。高考是一场成王败寇的残酷竞争,它是公平的也是不公平的,说高考公平是因为所有人都将面对同样的时间、知识、试卷;说高考不公平是因为对每个人来说信息并不对称——对高考分析透彻的人自然拥有更高的复习效率必然会取得更出色的成绩。
这里我强调的并不是高中的基础知识掌握程度而是复习的效率问题,谁的基础知识更牢固谁将取得更好的高考成绩这是一个铁的事实,但它是建立在“所有人的复习效率都是相同的”这个假设之下的,所以大家经常可以看到有些高考考生学的呕心沥血却永远只是中游水平,而另一些高考生拥有大量的休闲活动却仍然能名列前茅。
造成这种现象的原因很多人会归结为“智商”和“运气”,我也不否认这两方面的因素,但最主要的原因还是效率问题:两个高考生同样学了一个小时的数学,一个人领悟了一个高考非常容易考到的重点内容,而另一个人啃下了一个非常难于理解的但是高考从来没有考过的难点内容,那么这样日积月累下来第一个人对高考真题考点的掌握就会远高于后者。这就是我说的“不但要会埋头拉车,还要会抬头看路”的意思,“拉车”就是指认真的复习,而“看路”则是指认清高考考察的重点,把握住高考复习的方向。“拉车”基本上是每个高三学生都能够作到的,但是“看路”就不尽然了,起早贪黑却劳而无功的高考生都是没有解决好复习方向的问题,没有看好“路”。
现在这个阶段是高三文科刚开始复习而理科将近结课的阶段,属于高考复习的初期,这一阶段给大家的建议是:
第一:先看一下近三、五年的高考真题,并不要去做这些高考真题,而是要从中分析出那些是真正的高考考点,从而为整个一年的高考复习定下一个正确的基调。
无法分清考点的轻重是最常见的问题,比如高考中《函数》与《导数》两部分的关系就是一个非常容易使人混乱的地方。《函数》是高一的重点章节,学校会反复强调它的重要性,说它在高考中占多少多少比例等等,而《导数》则只是高三中的一个辅助章节尤其是文科,它的章节比重很小,学校强调的也不够。这就给大家一个错觉就是函数比导数重要,但是事实上在真正的高考中它们两者的位置恰恰相反,函数的考查只有3至4道小题而且都位于试卷前几道题十分简单,其它问题虽然大量使用函数思想但是对同学们解题没有实质上的影响。反观导数它在高考中直接占有一道大题特别是07年的文科试题,它取代了《数列》的地位成为了倒数第二位的14分难题,同时只要遇到“函数单调性”“极值”“最值”“值域相关问题”“切线问题”等都要使用导数知识进行解决。当然函数的单调、极值等可以用《函数》知识处理但比起导数来说这是十分烦琐的。
所以说导数的地位要远比函数来的重要,这一问题往往是影响大家高考复习效率的一个关键问题,发现它并不需要“智商”和“运气”,只要看一遍近几年高考真题即可,这就是我第一条建议的重点所在。
第二:分析自己的实力特征,果断对知识点进行取舍。高考是选拔性的考试,并不要求我们在某个单科中考出满分,只要高考总成绩能够胜出就可以,所以我们一定要根据自己的真实水平对整个高考复习作一个规划。07年天津市理科状元的数学成绩只有138分,并不是传奇的150,他其他的高考科目也都是很高但远没达到最高,这就说明了我们要合理分配自己的精力使自己的能力得以最大的发挥。这一点就是要告戒大家千万不能偏科,我们身边经常有一些高考考生他们某几门学科成绩十分优异(高于状元),但总成绩只能达到中游或中上的水平,他们最大的问题就是时间分配,如果他们节省出一部分花在强势学科上的时间转移到弱势学科上,他们必将取得更好的成绩。
第三:正确对待模拟考试与模拟题。如果已经看过高考真题的同学很容易发现高考真题与模拟题有着天壤之别,大多数模拟题尤其是出自低级别地方的,根本无法达到高考真题的水平,做它们是无法真实反映大家在高考中的表现的。所以大家在现阶段应该首先看“题”是否值得作再看作的是否好,这才是正确的方法。
2023高考数学复习 第2篇
定位要合理,注重基础知识
陈秋波表示,通过近几年来的对高考试题的研究分析发现,文科数学考查的多是中等题型,占据总分的百分之八十之多,对于大多数的文科生来说,作好这部分题是至关重要的。学生要加大独立解题和考场心理的模拟训练,这是可以进一步改善的地方,可大大提高整体的数学成绩。学生要正确估计自己的数学水平和数学学习能力,确立自己切实可行的数学复习起点和数学成绩的学习目标,对高三文科中加试艺术的绝大部分同学而言,数学基础相对较差,因此,数学复习必须要狠抓基础复习。通过复习,能运用所掌握的知识去分析问题,解决最基本的填空题和中档题,对于难题,要学会主动放弃,没有必要去浪费时间。如果真正把基本的东西弄懂了,确保填空题(前10道)、选择题(前3题)不失分或少失分,牢牢抓住40%(试卷结构易、中、难比例为4:4:2)不放松,再根据可能,完成中档题中的容易部分,高考完全可以超过100分。
要对教材合理利用
陈秋波强调,高考考查点“万变不离教材”,许多的试题就来源于教材的例题和习题,学生们要提高对教材的重视,课本中的例题、习题是高三文科生复习的一份宝贵资源。重做课本中的典型习题,学生可以站在全局的角度上,重新审视和总结其中所蕴含的疑难点以及解题方法和数学思想,这样可以对数学的学习有一种全新的感悟。学生在高一高二的数学学习过程,总是存在着很多未被消化的疑难问题,这些内容一直困挠着他们的数学思维能力的发展,也影响着对数学的学习信心。先整体把握全教材的章节,再细化具体的内容,用联想的方式,使在自己的头脑中构建知识体系,理解解题思想和知识方法的本质联系,提高实际运用能力非常重要。回归课本,不是要强记题型、死背结论,而是把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练,这样复习才有实效。
总结:整理的高考数学复习重点资料帮助同学们复习以前没有学会的数学知识点,请大家认真阅读上面的文章,也祝愿大家都能愉快学习,愉快成长!
2023高考数学复习 第3篇
常用数学公式表
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1_2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1_+2_+3_+4_+5_+6_+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
了解了文科数学的常用公式,接下来我们来学习一下文科数学的知识点。
2023高考数学复习 第4篇
对一个问题正面思考受阻时,就逆推,直接证有困难就反证。对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
第一:认真审题。审题要仔细,关键字眼不可疏忽。不要以为是“容易题”“陈题”就一眼带过,要注意“陈题”中可能有“新意”。也不要一眼看上去认为是“新题、难题”就畏难而放弃,要知道“难题”也可能只难在一点,“新题”只新在一处。
第二:先易后难。试卷到手后,迅速浏览一遍所有试题,本着“先易后难”的原则,确定科学的答题顺序,尽量减少答题过程中的学科转换次数。高考试题的组卷原则是同类题尽量按由易到难排列,建议大家由前向后顺序答题,遇难题千万不要纠缠。
第三:选择题求稳定。做选择题时要心态平和,速度不能太快。生物、化学选择题只有一个选项,不要选多个答案;对于没有把握的题,先确定该题所考查的内容,联想平时所学的知识和方法选择;若还不能作出正确选择,也应猜测一个答案,不要空题。物理题为不定项选择,在没有把握的情况下,确定一个答案后,就不要再猜其他答案,否则一个正确,一个错误,结果还是零分。选择题做完后,建议大家立即涂卡,以免留下后患。
第四:客观题求规范。①用学科专业术语表达。物理、化学和生物都有各自的学科语言,要用本学科的专业术语和规范的表达方式来组织答案,不能用自造的词语来组织答案。②叙述过程中思路要清晰,逻辑关系要严密,表述要准确,努力达到言简意赅,切中要点和关键。③既要规范书写又要做到文笔流畅,不写病句和错别字,特别是专业名词和概念。④遇到难题,先放下,等做完容易的题后,再解决,尽量回忆本题所考知识与我们平时所学哪部分知识相近、平时老师是怎样处理这类问题的。⑤尽量不要空题,不会做的,按步骤尽量去解答,努力抓分。记住:关键时候“滥竽”也是可以“充数”的。
2023高考数学复习 第5篇
在一轮复习中,数学科目当年的《考试说明》和《教学大纲》是非常重要的。这些材料你可以通过网络或者通过老师来获取。找到之后要好好研究,不能大致浏览,要了解每一部分要求学习到怎样的程度。虽然这些工作老师也会进行,但是由于你比较了解自己的优势和不足,所以研究起来更加有针对性。对于这两部分材料的研究,最终目的是时即使丢开课本,头脑中也能有考试所要求的"数学知识体系。
数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。第一轮复习时要尝试把相关的知识进行总结,方便自己联系思考,既能明白知识之间的区别,又能为后面的专题复习做好准备。
一轮复习的重点永远是基础。要通过对基础题的系统训练和规范训练,准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。第一轮复习一定要做到细且实,切不可因轻重不分而出现前紧后松,前松后紧的现象,也不可因赶进度而出现点到为止,草草了事的情况,只有真正实现低起点、小坡度、严要求,实施自主学习,才能真正达到夯实双基的目的。
运算能力是学习数学的前提。因为高考并不要求你临场创新,事实上,那张考卷上的题目你都见过,只不过是换了数字,换了语句,所以能不能拿高分,运算能力占据半边天。而运算能力并不是靠难题练出来的,而是大量简单题目的积累。其次,强大地运算能力可以弥补解题技巧上的不足。我们都知道,很多数学题目往往都有巧妙地解决方法,不过很难掌握。可那些通用性的方法,每个人都能学会,缺点就是需要庞大的计算量。再者,运算迅速可以节省时间,也不会让你因为粗心而丢分。此外,复习数学也和其它科目一样,也不能忽视表达能力和阅读理解能力的运用。
再有,本阶段要避免特难题、怪题、偏题,而是抓住典型题,每道题都要反复想,反复结合考点琢磨,最好是一题多解,一题多变,借助典型题掌握方法。
2023高考数学复习 第6篇
数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。第一轮复习时要尝试把相关的知识进行总结,方便自己联系思考,既能明白知识之间的区别,又能为后面的专题复习做好准备。
一轮复习的重点永远是基础。要通过对基础题的系统训练和规范训练,准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。第一轮复习一定要做到细且实,切不可因轻重不分而出现前紧后松,前松后紧的现象,也不可因赶进度而出现点到为止,草草了事的情况,只有真正实现低起点、小坡度、严要求,实施自主学习,才能真正达到夯实双基的目的。
运算能力是学习数学的前提。因为高考并不要求你临场创新,事实上,那张考卷上的题目你都见过,只不过是换了数字,换了语句,所以能不能拿高分,运算能力占据半边天。而运算能力并不是靠难题练出来的,而是大量简单题目的积累。其次,强大地运算能力可以弥补解题技巧上的不足。我们都知道,很多数学题目往往都有巧妙地解决方法,不过很难掌握。可那些通用性的方法,每个人都能学会,缺点就是需要庞大的计算量。再者,运算迅速可以节省时间,也不会让你因为粗心而丢分。此外,复习数学也和其它科目一样,也不能忽视表达能力和阅读理解能力的运用。
再有,本阶段要避免特难题、怪题、偏题,而是抓住典型题,每道题都要反复想,反复结合考点琢磨,最好是一题多解,一题多变,借助典型题掌握方法。
2023高考数学复习 第7篇
1、忘空集致误
由于空集是任何非空集合的真子集,因此B=空集时也满足B真属于解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
2、忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
4、函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
5、判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数
6、函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题
7、导数的几何意义不明致误
函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”。
8、导数与极值关系不清致误
f′(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(x)在x0两侧异号.另外,已知极值点求参数时要进行检验。
9、三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sin>
10、图像变换方向把握不准致误
函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>1时)或伸长(当0<1时)到原来的1ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>1时)或缩短。
11、忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
12、向量夹角范围不清致误
解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
13、忽视零截距
解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式。因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况。
14、忽视圆锥曲线定义中条件致误
利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件。如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|。
如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支。
15、误判直线与圆锥曲线位置关系
过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;
二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系。在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性。
16、两个计数原理不清致误
分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.
对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理。
17、排列、组合不分致误
为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.
建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题。
18、混淆项系数与二项式系数致误
在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,…,n项的二项式系数分别是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,而项的系数是二项式系数与其他数字因数的积。
19、循环结束判断不准致误
控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束。
20、条件结构对条件判断不准致误
条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值。
21、复数的概念不清致误
对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数。
2023高考数学复习 第8篇
在高三第一个学期,绝大多数学校都在进行数学第一轮复习。如今,这一阶段基本都已近尾声。这阶段,许多考生备考状况是跟着老师转,成天听课做题,杂乱无章,没有头绪,心中无底,忐忑不安。其实,在寒假将近二十天的时间里,最需做的就是梳理知识网,查漏补缺。一般来说,在梳理过程中难免会遇到不是很明白的地方,这时需翻书对照,防止概念、公式、定理用错。另外,要进行重要和典型问题的解题方法的归纳,要注意各种方法的.适用范围,防止只是形式的简单套用导致原理错误。只有这样才能以不变应万变,而这正是华师附中学生最喜欢做的事情。
梳理知识查漏补缺,可以按章节进行。比如对圆锥曲线一章可按如下进行:
(1)基本概念:曲线和方程定义及应用、圆锥曲线的定义及标准方程、直线和圆锥曲线的位置关系等。
(2)基本题型的常见解法、特殊解法,如求两圆相交弦所在直线的方程,若求交点,不仅计算繁而且还会出现运算错误,用曲线系方程则很简单。
(3)易错问题剖析,及时查漏补缺。
(4)本章涉及哪些数学思想方法。对思想方法的归纳要通过具体例子来实现,比如中点弦问题,涉及弦长,则用韦达定理,不涉及弦长,则用点差法。
适量限时训练数学卷
不做适量的题,要想考好数学,那是不可能的!而做数学卷,最好是进行限时训练。把平时做卷当成高考做卷,既训练解题速度,又能发现自己的漏洞及时查漏补缺,还可以保持自己良好的应考状态。在寒假近二十天时间里,建议做两套综合卷(两小时),七套单元卷(40分钟)。
限时训练后,进行自评,并结合进行梳理知识查漏补缺。具体可参考下述表格安排寒假数学复习。
2023高考数学复习 第9篇
科学训练,精心批改
在复习教学的各个阶段要注重狠抓基础知识的落实和解题能力的训练,测试试卷要以能力立意,突出对基础知识、基本技能和基本方法的考查,力争做到新题不难,难题不怪,试题切入容易,深入困难,适当增加开放性试题,以逐步增加学生对高考的适应性.练习后的讲评是复习教学的重要环节,要重视讲评的针对性与时效性,一般来讲重大的考试讲评要先进行冷处理,留给学生分析错因、自我调节的时间,对重点对象和特殊对象教师要开展面批,帮助学生分析是知识型错误、方法型错误、思维方向型错误、运算错误、应试策略错误还是考试的心理素质问题.
重在思维,讲评方法
教学中要驾驭好三条线:知识(结构)是明线(要清晰);方法(能力)是暗线(要领悟、要提炼);思维(训练)是主线(思维能力是数学诸能力的核心).渗透科学方法、培养思维能力是贯穿教学始终的首要任务.如在试卷的评讲过程中,应该使学生的思维能力得到发展,分析与解决问题的悟性得到提高,对问题的化归意识得到强化.注意发挥一题多解的教学作用,教师除了自我寻找多种解法外,还应注意提取来自学生的巧妙灵活的解法和独树帜的思路.在展示一题多解时,切忌只是多种解法的简单罗列,而应重在思路的分析和解法的对比,从而揭示最简或解法.在讲评练习时,大可不必按题号顺序进行,可以采用分类化归,集中评讲的方法.①涉及相同知识点的题,集中评讲,这样做可以强化学生的化归意识,使他们对这些知识点的理解更深刻、印象更强烈.当然要注意重点突出,兼顾一般,详略得当;②形异质同的题,即本质相同或处理方法相似的试题宜集中进行评讲.通过这类试题的评讲可以达到举一反三的目的,使学生真正掌握这一类问题的处理方法;③形似质异的题,集中评讲,要指导学生透过现象看本质,注意比较异同,防止思维定势产生的负迁移.
照顾一般,突出重点
讲评时,不应该也不必要平均用力,有些试题(最简单和最困难的题目)只要点到为止,个别学生如果有问题,可课后单独解答;有些典型试题则需要仔细解剖:讲题意、讲思路、讲方法;对那些涉及重、难点知识及能力要求较高的试题可借题发挥,讲联系、讲创新,通过讲一道题,使学生会一类题;对于学生错误率较高的试题,则要对症下药.通过讲练,使模糊的知识清晰起来,缺失的知识填补起来,杂乱的知识条理起来,孤立的知识联系起来,让学生形成系统化、条理化的知识框架.为了在讲评时实现上述目标,教师必须认真批阅试卷,对每道试题的得分率应细致地进行统计,对每道试题的错误原因准确地分析,对每道试题的评讲思路精心地进行设计.只有做到评讲前心中有数,才会做到评讲时有的放矢.
激励斗志,增强信心
信心和毅力比什么都重要,表扬激励应贯穿于整个讲评始终.例如,我们可以从学生的试卷中捕捉闪光点,对他们在卷面上反映出的点滴进步加以肯定,激发他们的学习热情,增强他们的学习自信心.当然,对于考得好的学生也要帮他们重新分析试卷,查找一些细微问题,使他们的成绩能够更上一层楼.
2023高考数学复习 第10篇
经过一轮复习的洗礼,同学们要好好看看自己对于基础知识,简单题目是否可以做到全面掌握,稳定拿分。
高考中有超过一半分数的简单题目,想要取得理想的成绩,基础一定不可以无谓的失分。
感觉自己基础没什么问题的同学,应该多向中档题、难题发起冲锋。
很多题目,有自己的一般解题套路,常见的题型,常见的套路,需要同学们去回顾。尤其是那些自己曾经做错或者没做出来的题目,应该经常拿出来回顾一下,提醒自己思路缺失的部分。
可以把近一两年来的北京高考真题,一模二模试卷都集中到一起,在保证自己做题手感的前提下,可以少做题,多看题。多体会题目中对自己来说新颖的命题思路或者解题方法。
一模二模的考试过后,分数也许不那么具有决定性,更重要的是考试中暴露出来的问题。可能是解题速度慢,卷子没有做完;也可能是知识模块中还有漏洞。
明确自己考卷失分的原因,针对性的进行练习。或者最后多练推导、解方程、联立的过程;或者针对自己的薄弱环节多刷题目。
不断拓宽的思路+逻辑缜密的演算=令人满意的数学成绩。高考最后冲刺的时间有限,有的放矢的解决自己还存在的问题,才可以充分利用剩下不多的时间多多提分。
2023高考数学复习 第11篇
一、复习思路:
如果把高三复习的教学比作捕鱼,一轮复习用密网,大小鱼虾一网打;二轮复习用鱼叉,瞄准大的把它拿;如果把一轮复习比作"火力覆盖"的话,二轮复习应叫做"重点打击"。这轮复习是使知识系统化、条理化,促进灵活应用的关键时期,启到了承上启下的作用。我们高三文科备课组将以全品二轮复习专题训练为主线,穿插各模拟卷和针对性练习。结合学生特点,建立以 “强化基础夯实,重点突出,难点分解,各个击破,综合提高。”的二轮复习思路,确保数学学科在20_年高考中取得好成绩!
二、.课程目标
(一) 知识目标
系统性:贯通各模块相关知识。通过纵向延伸和连接,构建完整、系统的知识结构。
综合性:建立不同知识,不同方法、不同学科之间联系。通过横向拓展、问题解决等,综合所学知识。
灵活性:通过对重点知识的讲解和变式训练,加深理解,掌握本质和内在联系,能灵活应用知识解决问题。
严谨性:通过讲解、讨论、辨析,克服学习难点、易错点和容易混淆的知识点,形成严谨、准确的知识体系。
(二) 能力目标
核心为数学思维能力:会对问题和资料进行观察、比较、分析、综合、抽象与概括,会用类比、归纳和演绎进行推理,能合乎逻辑地、准确地表达。
运算求解能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。是思维能力和运算技能的结合。
空间想象能力:能根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质。
抽象概括能力:对具体、生动的实例能在抽象、概括的过程中,发现对象的本质;从给定的大量信息材料中,能概括出一些结论,并能将其用于解决问题或做出判断。
推理论证能力:能根据已知事实或命题,论证教学命题的真实性。包括归纳、演绎、猜想、证明。
数据处理能力:会收集、整理、分析数据,能从数据中抽取对研究、解决问题有用的信息,并做出判断
数学应用意识:能综合应用所学知识、思想、方法解决问题,能理解问题所陈述的材料,并对提供的信息资料归纳、整理和分类,将实际问题抽象为教学问题;能用相关教学方法解决问题并会验证,能用数学语言正确地表达和说明。既从现实生活中提炼相关数量关系,将实际问题转化为教学问题,构造教学模型,并加以解决。
创新意识:能发现问题、提出问题,综合与灵活地应用所学数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考,探索和研究,提出解决问题的思路,创造性地解决问题。创新意识的强弱取决与对教学知识的迁移、组合、融合的程度。
(三) 数学思想方法:通过解决问题让学生亲身感悟和体会以下基本的数学思想方法:
函数与方程的思想方法
数形结合的思想方法
化归与转化的思想方法
分类讨论的思想方法
三、课程内容:
(一)专题复习及时间安排
说明:每周一个专题,一次综合测试与讲评,一到二份基础题练习与讲评,期间参插各地联考等模拟卷的练习与讲评。
(二)解题策略与解题规范训练
填空题解答策略
选择题解答策略
主观试题解答策略
(三)模拟考试与应试心理调适
学生学习中的难点、易错点、易混点讲解辨析
学生学习中的薄弱环节强化
应试技术训练
应试心理调适与素质训练。
四、实施办法
(一)以学生为本,实现8个关注
关注学生思维发展
老师们都有这样的体会:同一种类型的题目课堂上讲过,甚至讲过好几次,可是很多学生在考试中仍然不会做。为什么会出现这种情况呢?其重要原因就是在教学中,教师仍然用灌输或变相注入式的教学,没有通过学生自身的思维活动,把有关知识纳入其认知结构中,从而成为有效的和用得上的知识。备课组将倾听学生的心声,深入了解学生的复习、练习情况,课堂上有针对性地启发、讲解,然后再让学生通过适当练习予以强化,对于典型问题,也可以让学生板演,这样能充分暴露学生的思维过程。“我们是教练,不是保姆。”让学生先做后听既为学生提供主动学习、独立思考的机会,放学给学生,虽然处理的题目少,但是对疑难问题的各个击破才能提高课堂教学的有效性。
关注学生获取知识的质量
在数学教学中,知识的巩固、技能的`熟练、能力的提高都需要通过适当而有效的练习才能实现。因此要充分发挥练习的作用,提高练习的有效性。不能搞题海战,那样会让学生疲惫不堪导致学生厌学,搞难度适中的周周练效果就很好。要严格控制练习题的质量和数量,练习题要精选,题量要适度,要注意题目的典型性和层次性。尤其对文科班学生,要保证他们获取知识的质量就是不停地反复反复再反复。这一点徐彦老师是我的榜样。
在指导学法方面仍然强调改错本的使用。要求学生每天看错题、易混淆的题以及典型题:把错题记录本以及高三大考试卷拿出来,认真分析和反思自己做错的题和典型题,这里面沉淀了自己学习高中数学的伤与痛,要看看自己经常在那些薄弱地方受伤,提醒自己不要再走错路了,毕竟好马不吃回头草!
关注学生应用知识的灵活性和综合性
关注学生数学意识、数学能力的形成
要关注学生学习方式,加强学法指导,帮助学生优化学习方法,提高学习效率;要加强应试指导,训练学生的应试技巧,使学生对不同难度的试卷都有良好的适应能力,在高考中能较好地发挥自己的水平。
关注学生数学思想、数学方法的形成
具体操作方法:配方、消元、换元、特值、待定系数
推理方法:综合法、分析法、反证法、类比法、解析法、归纳法
宏观策略性思想方法:函数与方程、数形结合、分类与整合、转化与化归
关注学生个人情感发展与个性思维品质的形成
要尊重和重视每一位学生,要经常主动地和学生进行接触和沟通,练习要实行全收全改,千万不能只改部分同学的练习,批改时,建议对题打勾,错题不要打叉, 打叉会挫伤学生,干脆不做任何记号,反正学生知道打勾的是对题,其余的是错题,他们知道老师给他们面子,会很自觉愉快地进行订正,这样可以保护学生学习数学的积极性,增强他们学习数学的信心。
关注学生学习状态、学习情绪、应试心理
要加强教学常规管理,强化各项措施的落实,对学生应多督促、多检查,帮助其克服惰性;要加强个别指导,对学生要多关心、多指导、多鼓励,要注意对学生的意志力和心理调节能力的训练,使学生能始终以积极的心态投入到学习中去。
关注对学生学习情况的反馈指导与个别辅导
同一个班级的学生,层次差别较大,若按统一的标准进行教学,势必导致个别优生吃不饱,差生吃不了。因此教学中对不同层次的学生,应区别对待,因材施教,因势利导,使他们都能得到充分的发展。要高度重视“提优补差”工作,采取各种有效措施把这项工作真正落实到位,只有这样才能真正面向全体学生,大面积提高教学质量。
重点人培养可以采用以下方案
1、要培养学生自学的习惯,如果一个学生过分依靠老师是不可能成为尖子生的.
2、定时给学生指定方向,规定这一段时间主要学那些章节的知识.
3、给一些我省各地市的摸拟试卷及省一些名校的习题集给他做让他们广东高考.
4、给一些高考中的创新题给他做让他适应新题型.
5、在生活上经常关心他.多忠他交流随时了解他的思想动态.