下面是小编为大家整理的考研数学概率论题型训练有多重要,供大家参考。
考研数学概率论的题型训练有多重要1
在考研数学中,高等数学的部分是重中之重。而数学是最能够拉开分数的科目,对于基础差的考生一定要努力复习。
这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。
费马引理的条件有两个:1.f"(x0)存在2.f(x0)为f(x)的极值,结论为f"(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f"(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。
费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。
该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。
闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?
前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。
那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。
拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。
以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的`过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。
考研数学概率论的题型训练有多重要扩展阅读
考研数学概率论的题型训练有多重要(扩展1)
——考研数学概率论有哪些重点题型 (菁选2篇)
考研数学概率论有哪些重点题型1
一部分考生在概率论第一轮复习结束后,针对教材,对大纲要求的知识点认认真真地学习了一遍,并将课后题也全部都做了。在这个时候将一道题目放在他的面前,会出现这样一种情况:这个题目是考察哪个知识点或哪几个知识点的综合,做这类题目要用到哪几个公式,这些公式的应用条件是什么,这些全部都很清楚;可是做题还是感觉无从下手,这是什么原因呢?
出现这种情况主要是因为对题目要用到的公式理解的还不够深刻,公式中的各个量到底代表什么,每个量有什么特点,这些量在不同的题目中可能会出现哪些表现形式,没有太好的把握,不能做到正确的应用这些公式。这一类型的题目做的太少了。
解决这个问题需要做一定量的针对训练,在训练中借鉴别人总结的解题方法,并在此基础上得到自己的解题心得及注意事项,改正错误解题步骤,每做一道题目有一道题目的收获。每一次专项训练做多少题目合适因题型而异,有些公式及知识只要少量的题目训练就可以掌握(离散型随机变量的考察多是这种情况);而对于一些相对来说较复杂的公式,就需要我们通过大量的题目训练来掌握(连续性随机变量的考察多是这种情况)。在针对题型的专项训练中,我们要处理各种各样的不同情况,在不断的总结这类题目的解题方法和解题技巧的同时,我们对于公式就有了更深一层次的理解和把握,从而可以不断提高做这类题目的正确率。
考研路上并不是一帆风顺的,在遇到困难时,积极地寻找解决方法,找到适合自己的解决办法,不断的进步,不断的提高,最后一定能走到胜利的终点!
考研数学概率论有哪些重点题型2
注重大纲和基础
“纲”是《数学考试大纲》,“本”为课本。虽然今年的数学考试大纲尚未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的大纲和试题进行复习。详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好的展开复习。凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是主要考点,务必要作为复习的重点。
数学复习不像英语、政治对辅导书的依赖性很大,主要靠课本来打下坚实的基础。翻一下数学大纲,上面列出的知识点全部来源于课本。提醒同学们一定要老老实实参照大纲的要求把原来的课本找出来,按照大纲对数学基本概念、基本方法、基本定理准确把握。
数学学习中最重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对最基本的一些解题方法的掌握和运用。从这几年的数学统考试题来看很少有偏题、怪题。考研专家通过多年析和授课经验,发现很多考生由于对基本概念、定理记不全、记不牢,理解不准确而丢分。所以数学首轮复习一定要注重基础。
加强练习和应用
研究生数学考试注重考察考生的综合能力,最终要看你解题的真功夫,而能力的提高要通过大量的练习,所以不能眼高手低,只看书不做题,每天可以做适量的题目。在做题的过程中才会发现考试重点、难点以及自己的薄弱环节。以便及时弥补自己的缺陷、把握重难点。
近年来的数学考研试题的一大特征是要求考生能将一些范围并不固定的几何、物理或者其它问题先建模抽象为数学问题,再利用相应的数学知识解答。(理工类已考过井底清污、雪堆融化、攀岩选址、压力计算、海洋勘测、汽锤作功、飞机滑行等问题)考研也考“熟练”度,只有通过针对性地实际训练才能真正地理解和巩固数学的基本概念、公式、结论。在练习过程中还要总结解题的技巧、套路,积累经验,把分散的知识在实际运用中联系起来,在理解的基础上触类旁通,熟能生巧后才能运用所学知识解决实际问题,以不变应万变。
当然,在考研数学复习中要注意到一些不应该犯的错误,大家要明确这些错误,要有针对性要避开的,这样才能把复习的效益最大化的提高。具体地说:
一 阶段复习
不分阶段的复习是复习无计划的表现,大家在复习的时候一定要分阶段复习,并且分阶段复习重点更是至关重要的。第一阶段为系统复习阶段,结合考试大纲,从头至尾复习,达到记住所有公式、概念的目的。第二、三阶段为强化训练阶段,通过练习,强化能力。
二 报辅导班
数学基础差、搞不懂基本概念、公式的学生是不适合直接上暑期和秋季的强化班。因为不同的班次有着不同的辅导目的,强化班解决不了学生的基础差问题,基础不好的学生上强化班是不会有好效果的。建议同学报基础班可以先打好扎实的基础再投入强化的复习,循序渐进——这个才是正确的报班观念。
三 多看多做
看懂了题不等于就会亲自解题,要以动手练习为主,锻炼好自己的运算能力,否则就会出现正式考试时会做的题因为运算不过关而拿不到分。所以,*时一定要注重实际的训练,不仅多看还要多做。
四 归纳总结
无论是作同一类型的题目还是作整套试卷,都要总结规律。通过作同一类型试题可以总结考试重点;通过作整套试卷,可以总结答题方法和时间分配方面的经验。
五 经常交流
“三人行必有我师”——交流可以碰撞出思想的火花,少到可以多探讨出一种解题方法,交流的好,可以改变自己的错误观点和坏习惯。你可以与同学交流,也可以尽可能找到上课的老师与他们交流,谦虚好学,不断总结,不断进步,争取让自己站到分析问题,审视问题的高度。
但是这些都也只是一个片面的了解,真正的数学高分就是靠大家认认真真、老老实实的复习,一步一步地总结归纳,将典型题型汇总复习,相信这样就不存在那些错误的"学习方法了。
考研数学概率论的题型训练有多重要(扩展2)
——考研数学概率论题型训练有什么用 (菁选2篇)
考研数学概率论题型训练有什么用1
一部分考生在概率论第一轮复习结束后,针对教材,对大纲要求的知识点认认真真地学习了一遍,并将课后题也全部都做了。在这个时候将一道题目放在他的面前,会出现这样一种情况:这个题目是考察哪个知识点或哪几个知识点的综合,做这类题目要用到哪几个公式,这些公式的应用条件是什么,这些全部都很清楚;可是做题还是感觉无从下手,这是什么原因呢?
出现这种情况主要是因为对题目要用到的公式理解的还不够深刻,公式中的各个量到底代表什么,每个量有什么特点,这些量在不同的题目中可能会出现哪些表现形式,没有太好的把握,不能做到正确的应用这些公式。这一类型的题目做的太少了。
解决这个问题需要做一定量的针对训练,在训练中借鉴别人总结的解题方法,并在此基础上得到自己的解题心得及注意事项,改正错误解题步骤,每做一道题目有一道题目的收获。每一次专项训练做多少题目合适因题型而异,有些公式及知识只要少量的题目训练就可以掌握(离散型随机变量的考察多是这种情况);而对于一些相对来说较复杂的公式,就需要我们通过大量的.题目训练来掌握(连续性随机变量的考察多是这种情况)。在针对题型的专项训练中,我们要处理各种各样的不同情况,在不断的总结这类题目的解题方法和解题技巧的同时,我们对于公式就有了更深一层次的理解和把握,从而可以不断提高做这类题目的正确率。
考研路上并不是一帆风顺的,在遇到困难时,积极地寻找解决方法,找到适合自己的解决办法,不断的进步,不断的提高,最后一定能走到胜利的终点!
考研数学概率论题型训练有什么用2
高等数学:构建模型 系统规划
高等数学是一门很抽象的学科,理解的时候,不要纠结于表面的概念,要在思考的时候,在脑中构建一个模型,这个很像编程时,思考内存模型。或者构建自己的复习思路,当复习到高数后面的知识点事,要结合前面的知识点,最后把学到的知识整体联系起来。数学的复习是一项长期工程,关键在于恒心和坚持,只有如此,才能取得最后的成功,因此,希望你能严格要求自己,能够保证每天都完成相应的学习任务。在暑期结束的时候,如果你都在稳扎稳打的看书了,高等数学的复习应该已经告一段落,考研数学复习的任务也就完成了三分之一。
线性代数:夯实知识点 少量做题
线性代数在考研数学中难度较高等数学来说要简单得多,但是考试题通常需要结合很多知识点才能解答出来。所以考生要抓住暑假这段时间踏踏实实看一遍线性代数的参考书,然后自己做出总结,并将各知识点串联在一起,结合少量习题理解知识点考核重点即可。
概率论与数理统计:对照往年考纲 少量题型
概率论与数理统计在考研数学初试中题型比较固定,一般情况下难度中等,所以,虽然酷暑难耐,同学们在复习这门课程时完全不必太过焦急。花一周左右的时间对照往年考纲,安心看参考书,做少量题型就可以对后期的复习有很大帮助。
如果你在前几个月对待考研复习的态度只是“两天打渔三天晒网”,那么暑期是你踏实打基础的最佳时机。一般来说,这两个月过去之后,九月份十月份的复习就会显得有秩序,反之,等到新的学期,一旦计划不好就会严重影响后期考研数学的复习进度。考研的同学都深知一点“得数学者,得天下”,若考研数学复习的进度不佳,会直接影响到其他三门的复习情况。因此,虽然烈日当头,我们依然要淡定的复习考研数学,一步一个脚印,踏踏实实,在稳重求得以后的胜利!
考研数学概率论的题型训练有多重要(扩展3)
——考研数学概率论怎么复习
考研数学概率论怎么复习1
1.概率的数理统计要怎么复习?什么叫几何型概率?
答:几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,数学三、数学四的话虽然明确写在大纲里,还没有考。
明年是否可能考呢?几何概率是一个考点,但不是一个考察的重点。我个人认为一是它考的可能性很小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的度量或者整个样本空间度量的比。这个度量的话指的是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。
何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做,我推测下次考的话,可能会难一点的。比如说用意项,面积可能用到定积分或者重积分计算,把概率和高等数学联系起来。
考研数学概率论的题型训练有多重要(扩展4)
——大学数学概率论各章节重要考点3篇
大学数学概率论各章节重要考点1
一、概率与数理统计学科的特点
(1)研究对象是随机现象
高数是研究确定的现象,而概率研究的是不确定的,是随机现象。对于不确定的,大家感觉比较头疼。
(2)题型比较固定,解法比较单一,计算技巧要求低一些
比如概率的解答题主要考查二维离散型随机变量、二维连续型随机变量、随机变量函数的分布和参数的矩估计、最大似然估计。考生只要掌握了相应的解题方法,计算准确,就可以拿到满分.
(3)高数和概率相结合
求随机变量的分布和数字特征运用到高数的理论与方法,这也是考研所要求考生所具备的解决问题的综合能力。
在复习概率与数理统计的过程中,把握住每章节的考试重点,概率一定能取得好成绩。
二、通过各章节来具体分析考试重点
第一章随机事件与概率
本章需要掌握概率统计的基本概念,公式。其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。
1.本章的重点内容:
四个关系:包含,相等,互斥,对立;五个运算:并,交,差;四个运算律:交换律,结合律,分配律,对偶律(德摩根律);概率的基本性质:非负性,规范性,有限可加性,逆概率公式;五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;条件概率;利用独立性进行概率计算;·重伯努利概型的计算。
近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。
2.常见典型题型:
随机事件的关系运算;求随机事件的概率;综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。
第二章随机变量及其分布
本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。
1.本章的重点内容:
随机变量及其分布函数的概念和性质(充要条件);分布律和概率密度的性质(充要条件);八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用;会计算与随机变量相联系的任一事件的概率;随机变量简单函数的概率分布。
近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。
2.常见典型题型:
求一维随机变量的分布律、分布密度或分布函数;一个函数为某一随机变量的分布函数或分布律或分布密度的判定;反求或判定分布中的参数;求一维随机变量在某一区间的概率;求一维随机变量函的分布。
第三章多维随机变量的分布
在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。二维连续型随机变量的.相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。掌握用随机变量的.独立性的判断的充要条件。最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。
1.本章的重点内容:
二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。本章是概率论重点部分之一!应着重对待。
2.常见典型题型:
求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度;已知部分边缘分布,求联合分布律;求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度;两个或多个随机变量的独立性或相关性的判定或证明;与二维随机变量独立性相关的命题;求两个随机变量的相关系数;求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。
第四章随机变量的数字特征
本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。
本章的重点内容:
随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数
第五章大数定律和中心极限定理
本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。
本章的重点内容:
切比雪夫不等式;大数定律;中心极限定理。
第六章数理统计的基本概念
重点在于“三大分布、八个定理”以及计算统计量的数字特征。
本章的重点内容:
总体与样本;样本函数与统计量;样本分布函数和样本矩。
第七章参数估计
本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。区间估计和假设检验只有数一的同学要求,考题中较少涉及到。
本章的重点内容:
点估计;估计量的优良性;区间估计;假设检验的基本概念;单正态总体的均值和方差的假设检验;双正态总体的均值和方差的假设检验。
大学数学概率论各章节重要考点2
1、随机事件和概率
它的重点内容主要是事件的关系和运算,古典概型和几何概型,加法公式、减法公式、乘法公式、全概公式和贝叶斯公式。主要是以客观题的形式考查。今年的考研数学中,数一和数三的一个选择题就考到了事件的关系和概率的问题。
2、一维随机变量及其分布
这是每年必考的,有单独直接考查,也经常与二维随机变量相结合去考查。重点内容是常见分布,主要是以客观题的形式考查。而今年数一和数三都是以大题的形式考到了常见分布-二项分布和n重伯努利试验的问题。
3、二维随机变量
重点内容是二维随机变量的概率分布(概率密度)、边缘概率、条件概率和独立性及二维正态分布的性质。二维离散型随机变量的概率分布的建立,主要是结合古典概率进行考查。二维连续型随机变量的边缘概率密度和条件概率密度的"计算,很多考生计算存在误区,一定要注意。而今年数一和数三只考到了二维正态分布的一个性质,还是一个填空题题。
4、随机变量的数字特征
每年必考,主要和其他知识点相结合来考查,一般是一道客观题和一道解答题中的一问,所以要重点复习。我们要掌握相应的公式进行计算即可,今年数一和数三的一个大题的第二小问考到了随机变量的数字特征,而且还是结合高等数学的无穷级数求和函数来考的,难度稍大。
5、数理统计的基本概念
此部分主要考两个题型,第一个是判定统计量的分布,第二个常考题型是求统计量的数字特征。常以客观题的形式进行考查。今年数一和数三都考了一个选择题,考的是第二个题型就求统计量的数字特征,此题涉及到的知识点,往年已考过多次。
6、参数估计
这是数一的考试重点,同时它也将成为未来数三的考试重点,所以数三的考生要引起足够的重视。点估计的两种方法即矩估计法和最大似然估计法经常是以解答题的形式进行考查,经常是试卷的最后一道题目。而今年数一和数三把点估计的两种方法都考了一遍,占11分。
考研数学概率论的题型训练有多重要(扩展5)
——如何突破考研数学线性代数和概率论3篇
如何突破考研数学线性代数和概率论1
▶难点
事实上线性代数应该是数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通。这门课由于思维上与高数南辕北辙,所以一上来会很不适应。总体而言,6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门。
▶学习规划
总的来说,线性代数这本书6章内容应该分为三个部分逐个攻破:首先行列式和矩阵,第二向量与方程组,第三第5和第六章。这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系。
最好是拿一张白纸,像C语言中的指针那样一个一个连起来,形成属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是什么,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。
对于概率论,第一章是整本书的思维基础,第二章与第三章的逻辑思维就好像一元积分与二元积分一样,难点在于二元积分的计算。在学习的过程中还是要先思考这一章节有哪些部分,每个部分哪些定义,哪些知识点,自己要找一张大纸,将这些全部像C语言中二叉树一样,罗列成一个树形图,最后根据每一个知识点各个击破。
第5章不用细看,第六章第七章主要是记忆,在记忆的基础上尽可能的理解。浙大版的书上每章的课后题相当经典,请同学们反复推敲,做过之后,请在总结一遍,比如说这几道题是属于离散型还是连续型,对应了哪些知识点。
▶视频学习法
线性代数:不要一上来就看李永乐的视频,因为那个视频是强化阶段看的,建议听一下施光燕的线性代数12讲,这位老师讲的内容很基础,只有十二讲,但是全讲到重点上去了,这样你就会很容易入门了。
概率论:如果基础不好的话,可以参考一下*科技大学缪柏其老师的视频,或者南京理工大学,陈萍老师的视频,这些网上都有,还可以下载。
▶做题与总结
对于这两门课,做题一定要建立在完成知识点的总结的基础上,不要光呆呆的看书,这样你会一直没有进步。一定要拿起笔,书上写得再好也还是编者老师的东西,只有自己总结的才是自己的。每一个知识点有哪些题型,每个知识点是什么意思,他能干什么,他想干什么,请你一定要罗列在一个本子上面,最后根据这个大纲来一个各个击破,讲每个部分的内容所出现的题型,一口气做20道,在总结相应的思路,同时打开自己总结的笔记,来一个反馈。
▶笔记
最好将自己的总结笔记分成两类,一类是知识点笔记,一类是题型思路归纳,这样一来反馈学习效果更明显,思路更清晰。
▶多问自己
一定要发现自己哪里不会,比如说你是行列式计算有问题,那就好了行列式计算一共就只有7种方法,逐个击破,如果是向量的证明题不会,好了首先搞明白线性有关线性无关的概念,再比如说你觉得级数难,你学的不好,那么你就要问自己是哪里学的不好?是不会判断收敛性?收敛性的判断只有五种方法,请逐个击破。是和函数求和与幕级数展开不会?那好了就将这种题型找出20个来,用一个上午连续做,中间不要停,你就会发现方法无非是分开,积分求导,往公式上套。
所以要先对知识点系统的总结,这样你才能发现自己哪里不会,也就是找到你知识的盲点误区。说了这么多还是要先对你要学的科目进行知识点的总结,形成一个指针连,或二叉树,做题就是强化所学,归纳出相应的方法思路。
希望我说了这么多可以对同学们有所帮助!祝大家成功!
如何突破考研数学线性代数和概率论2
一、注重理解基本概念、基本性质
从历年试题看,线性代数主要考查考生对基本概念、性质的深入理解以及分析解决问题的能力,需要考生能够做到灵活地运用所学的知识,熟记一些解题方法去解决线性代数问题。所以大家在复习过程中要准确理解线性代数的基本概念,基本性质,为了深刻记忆,同学们可以结合一些例题和练习题来训练,只要概念和方法理解准确到位,多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。基础知识的`复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教材中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。在此过程中,不要过多地去追求复杂的题,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、性质和方法。
二、认真分析考试大纲,抓住考试重点
考试大纲是最重要的备考资料,从历年的数学大纲来看,每年基本上不变,所以同学们可以先参考2016年考研数学大纲,将大纲中要求的考点仔细梳理一下,一定要明确重点,不要在不太重要的内容和复杂的题目上投入太多精力。而对于线性代数的重点考查对象一定要重视,例如,线性方程组的求解基本上每年都会以解答题的形式考查,矩阵的特征值、特征向量以及化成对角矩阵是考试频率最高的,也是较难的一类题目,这类问题的关键,所以*时复习要加强这类题型的训练。另外,围绕向量的秩的考查也是考试的重点,大家在复习过程中一定要深刻理解它们的性质。
三、重视练习考研真题
真题是最具有代表性的资料,因为线性代数考试内容和技巧比较单一,变化相对少,所以在考研真题题型中的重复率可以达到90%,因此我们要加强对历年真题的重视,尤其是近十五年的真题,总体来讲,做真题可以分两步。第一步,做套题,这样一是可以检验复习的水*,发现概念和内容上不熟悉的地方,另外为真正的考试积累经验。第二步,按照章节分类解析,在第一步基础上,有些题目有可能会做错,把它们记下来,在进行各个章节专题训练时强化知识和方法。最后,把近十五年的真题再研究一下,弄清楚常考的是哪些内容,把考试题型彻底熟悉,并且要会正确解答。一定不要过多的花时间去理解其它无关或者非重点内容。
四、模拟练习必不可少
最后冲刺阶段,需要回归教材,把课本再认真梳理一遍,查遗补漏,将知识明确化、系统化。另外,可以做几套模拟试卷。从知识点到做题思路,解题技巧,答题顺序等各个方面进行强化训练,千万不要做太难太偏的模拟题,不然会做无用功,甚至对考试失去信心,也起不到“实战”的价值。考前两天将重要公式回顾一遍。通过完整的复习,形成最终的竞争力,考出最好的成绩。
考研数学概率论的题型训练有多重要(扩展6)
——考研数一数三概率论的复习技巧 (菁选2篇)
考研数一数三概率论的复习技巧1
首先,结合历年考纲,我们先把全书进行剖析:
第一章
1、交换律、结合律、分配率、的摩根律;(解题的基础)
2、古典概型——有限等可能、几何模型——无限等可能;
3、抽签原理——跟先后顺序无关;
4、小概率原理——小概率事件在一次试验不可能发生,一旦发生就怀疑实现规律的正确性;
5、条件概率:注意当条件的概率必须大于0;
6、全概:原因>结果 贝叶斯:结果>原因;
7、相容通过事件定义,独立通过概率定义。
第二章
1、0——1分布,二项分布,泊松分布X的取值都是从0开始;
2、分布函数是右连续的,在求分布函数也尽量写成右连续的;
3、分布函数的性质、概率密度的性质;
4、连续性随机变量任一指定值的概率为0;
5、概率为0不一定是不可能事件,概率为1不一定是必然事件;
6、正态分布的图形性质;
7、求函数的分布尽量按定义法,按定义写出基本公式;
8、分段单调时应该分段使用公式再相加。
第三章(这章比较容易出错)
1、二维分布函数的性质;(不减函数而不是单增函数;右连续)
2、求分布函数一定要按定义来,注意画对图形;
3、求边缘分布的时候,注意不同变量的区间用在什么地方;求X的`边缘分布的话,先对X的区间进行划分,再不同的区间对Y的全部区间进行积分(Y在不同的区间可能有不同的函数表达)
4、负无穷到正无穷的E的负的二分之T*方的积分;(浙三P83)
5、算条件概率也一样,注意相应的区间;(这种题细节丢分太可惜)
6、max(x,y)与min(x,y)相互独立的情况是什么?独立同分布又是什么?(参见08选择题)
7、边缘分布一般不能确定分布的,只有当变量相互独立才可以。
第四章
1、级数绝对收敛,期望才存在;
2、期望的和等于和的期望,xy之间不要求任何关系;期望的乘积等于乘积的期望,xy要相互独立;
3、浙三P120:分解的思想,还有P126;
4、方差的和在独立和不独立时公式不一样;
5、独立推出不相关;不相关推不出独立;不相关只是线性不相关;题目中如果xy的关系能够表示出来的话(一般)都是不独立;
6、二维正态分布、独立不相关等价;
7、提示:求一些积分的时候有时候可以用到对称性;
8、数一400题P140那个评注上面T(4)=3!(会用,那么做题会很方便)
考研数一数三概率论的复习技巧2
1、学习而不是复习
对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了。所以,考研的这一遍要强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
2、复习顺序的选择
对于考研数学,建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成“夹生饭”会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。当然,大家也可根据自己的特殊情况调整复习顺序。
3、加强练习掌握规律
数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
4、不要依赖答案
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。
5、积极整理笔记
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
总之,还是那句话我希望大家带着兴趣去学习数学,那样自己的学习效率也会随着提高。遇到不会的问题弄明白之后再举一反三,这样对知识的掌握就会越来越熟练,自己的信心也会得到提高。如果实在是觉得兴趣不高,那就先找到自己熟练的知识点复习,等到积累一定的自信和兴趣之后再逐一攻破,相信你们也会像我一样在复习中找到乐趣和快乐的!大家,加油吧!千万不要气馁和妄自菲薄!
考研数学概率论的题型训练有多重要(扩展7)
——考研数学概率论与数理统计复习指南 (菁选2篇)
考研数学概率论与数理统计复习指南1
首先必须会计算古典型概率,这个用高中数学的知识就可解决,如果在解古典概率方面有些薄弱,就应该系统地把高中数学中的概率知识复习一遍了,而且要将每类型的概率求解问题都做会了,虽然不一定会考到,但也要预防万一,而且为后面的复习做准备。
随机事件和概率是概率统计的第一章内容,也是后面内容的基础,基本的概念、关系一定要分辨清楚。条件概率、全概率公式和贝叶斯公式是重点,计算概率的除了上面提到的古典型概率,还有伯努利概型和几何概型也是要重点掌握的。
第二章是随机变量及其分布,首先随机变量及其分布函数的概念、性质要理解,常见的离散型随机变量及其概率分布:0-1分布、二项分布B(n,p)、几何分布、超几何分布、泊松分布P(λ);连续性随机变量及其概率密度的概念;均匀分布U(a,b)、正态分布N(μ,σ2)、指数分布等,以上它们的性质特点要记清楚并能熟练应用,考题中常会有涉及。
第三章是多维随机变量及其分布,主要是二维的。大纲中规定的考试内容有:二维离散型随机变量的概率分布、边缘分布和条件分布,二维连续型随机变量的概率密度、边缘概率密度和条件密度,随机变量的独立性和不相关性,常用二维随机变量的分布,两个及两个以上随机变量简单函数的分布。
第四部分随机变量的数字特征,这部分内容掌握起来不难,主要是记忆一些相关公式,以及常见分布的数字特征。大数定律和中心极限定理这部分也是在理解的基础上以记忆为主,再配合做相关的练习题就可轻松搞定。
数理统计这部分的考查难度也不大,首先基本概念都了解清楚。χ2分布、t分布和F分布的概念及性质要熟悉,考题中常会有涉及。参数估计的矩估计法和最大似然估计法,验证估计量的无偏性是要重点掌握的。假设检验考查到的不多,但只要是考纲中规定的都不应忽视。显著性检验的基本思想、假设检验的基本步骤、假设检验可能产生的两类错误以及单个及两个正态总体的均值和方差的假设检验是考点。
总之概率统计部分考题的考查难度不会太大,考题灵活度也不如高等数学,只要参考汤家凤老师的复习大全把基本概念、公式、定理掌握好了,例题、习题多做些,历年真题里的相关题目认真做几遍,这样下来概率统计部分掌握的也差不多了,相信各位考生一定会考出个好成绩。
考研数学概率论与数理统计复习指南2
一、考研数学得高分,基础是关键
专家认为,考研数学得高分打基础是关键,考生必须牢固掌握基本知识点,建立起知识体系,不能靠临时突击,没有扎实的基础,技巧变成了空中楼阁,无根之木无源之水。
数学是一门逻辑科学,数学知识点多且分布散,这就要求考生在复习过程中要注重基础,多做题,反复训练,熟能生巧。但,博研堂辅导专家也提醒考生:不能搞题海战术,不能盲目做题,而是要紧扣考纲,抓住考点,对知识点要在应试的大目标下进行把握和运用。
比如,高数的基本内容包括极限、一元函数微积分、多元函数微积分(主要是二元函数)、无穷级数与常微分方程、向量代数与空间解析几何等几个部分。其中,多元函数微积分,无穷级数与常微分方程是高等数学考研出题的重点,向量代数与空间解析几何在历年真题中出现的很少。因此,考生在高数的备考过程中要把重点放在极限、导数、不定积分、一元微积分的应用、中值定理、多元函数微积分、线面积分等方面。对于上面的知识点必须掌握牢固:比如求不等式的极限,考生要充分掌握不定式极限的各种求解方法,包括利用极限的四则运算和洛必达法则等等,另外还涉及两个重要极限和函数的连续性。
对于微积分这一部分,导数的定义是考生必须掌握的,即抽象函数的可导性,积分部分的重点是定积分、分段函数的积分、带绝对值函数的积分等各种积分的求法。在多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数也是考试涉及的内容。所以,考生一定要围绕考纲考点进行针对性的基础复习。
博研堂教育的专家还提醒考生,每个学生的基础特点不一样,因此考生要根据自己的实际情况安排基础复习的重点,不能人云亦云,邯郸学步,一定要注意辅导和复习的个性化问题。
二、考研数学得高分,技巧是保障
博研堂的个性化辅导专家认为:考研数学要得高分甚至满分,只有基础是不够的,还必须掌握答题技巧。由于考研试题灵活多变,太注重基础,就会拘泥于书本,导致难以适应考研试题。有了好的基础,考生分数会在90-100分之间,而只有有了高超的解题技巧,才能够超越135分,才能有机会获得满分。提高技巧的发法就是在掌握知识点的基础之上加强真题的研究、模拟、训练和总结,这样才能实现相关知识点间的融会贯通,才能实现从熟悉定理到答对题目的飞跃。
考研辅导专家指出,近年数学试题综合性不断加强,计算量不断提高,加大了对考生数学思维能力的考查而不是简单的套公式。考生要做到活学活用书本知识,看书和做题的过程中要不断思考其逻辑结构,把一个个的知识点联系起来,形成固定的知识体系,要不断总结解题技巧,做到举一反三。比如在学习函数极限的性质中的局部有界性时,考生如果联系其在几何上的形式来理解,并思考其实质含义及应用,学习效果就会事半功倍。
三、考研数学满分复习建议
每个学生的请款不一样,所以博研堂倡导个性化的复习和辅导,但仍然有一些共性的建议可以提供给广大考生。
在备考的第一轮,数学复习不要间断,尽量每天保证3个小时来复习数学,数学的学习是靠的日积月累,建立在夯实的基础和大量的习题之上的,虽然我们不可能天天泡在数学里,但是如果每天都能坚持,效果定会显现。
复习时为避免基础不牢而导致头重脚轻、力不从心,复习第一步就是读教材而不是看辅导书。教材是基础,是数学复习中必须重视的知识,因此,一定要把握,好好利用。熟练掌握教材中的基本定义、定理和公式后,接下来就要通过课后的习题,来检验对基础知识的掌握程度,如果遇到不会的题目或做错的题目一定要认真分析,总结。最好准备一个错题本,把*时遇到的感觉容易出错的题目或知识点记录下来,这在后期复习中将会起到很大的作用。
当教材复习到一定程度时,考生应该根据自己的情况选择一本辅导书。分板块地进行做题,从而巩固知识点。考研资料在精不在多,博研堂为考生准备的内部资料集萃,即减轻了考生的经济负担,又替考生节省了大量时间,同时博研堂辅导专家还会根据学生的个性化特点对每个学生进行针对性的复习指导,总结规律,这样更加提高了复习效率。
在第二轮解题训练过程中,博研堂要求考生明确基础与提高是一种辩证关系。要根据自身情况合理安排复习进度,处理两者关系。不能为了做题而做题,要在做题时巩固基础,提高自己对知识点更高层次上的.把握和运用,掌握之间融通贯通的小技巧,要善于归纳总结,对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。
考研本身是一场意志力的比赛,不仅需要丰富的知识和较高的能力,更要有坚强的意志力。博研堂鼓励考生:只要脚踏实地,持之以恒,狠抓基础,重视能力,数学得满分将不再是神话!
考研数学概率论的题型训练有多重要(扩展8)
——考研数学概率论首轮复习的疑问 (菁选2篇)
考研数学概率论首轮复习的疑问1
1.概率的数理统计要怎么复习?什么叫几何型概率?
答:几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,数学三、数学四的话虽然明确写在大纲里,还没有考。明年是否可能考呢?几何概率是一个考点,但不是一个考察的重点。我个人认为一是它考的可能性很小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的度量或者整个样本空间度量的比。
这个度量的话指的是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。
何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做,我推测下次考的话,可能会难一点的。比如说用意项,面积可能用到定积分或者重积分计算,把概率和高等数学联系起来。
关于第二个问题,概率统计怎么复习,今年的考试分配很不正常,明年不会是这样的情况。我想明年数学一(统计)应该考一个八、九分的题是比较适中的。从今年考试中心的样题统计这一块是九分。数学三(统计)应该八分左右,统计这一块大家不要放弃,明年可能会考,分数应该是八、九分的题。
至于复习,它的内容占了四分之一的样子。但是这一部分的题相对于概率题比较固定,做题的方法也比较固定,对考生来说比较好掌握,但这部分考生考得差,可能很多学校没有开这门课,或者开的话讲得比较简单,所以一些同学没有达到考试的水*。其实这部分稍微花一点时间就可以掌握了。主要就是这几块内容一是样本与抽样分布,就是三大分布搞清楚,把他们的结构搞清楚,把统计上的分布搞清楚。
然后是参数估计、矩估计、最大似然估计、区间估计、三种估计方法,三个评价标准,无偏性、有效性、一致性,重点是无偏性的考查,因为它是期望的计算,其次是有效性。一致性一般不会考,考的可能性很小。这三种估计方法重点也是前面两种,矩估计、最大似然估计,区间做了限制,考了很少,历年考试的情况也就是代代公式。
最后一部分是假设检验这部分,这一部分我个人推测明年有可能考一个概念性的小题。一是了解U检验统计量、T检验统计量、卡方检验统计量,把这三个检验统计量的分布搞清楚。另外假设检验的思想和四个步骤了解一下就可以了。我想这部分考生少花一点时间,统计这个题是没有问题的,重点就是参数估计,就是三种估计方法,三个评价标准,重点在那个地方。
2.概率的公式、概念比较多,怎么记?
答:我们看这样一个模型,这是概率里经常见到的,从实际产品里面我们每次取一个产品,而且取后不放回去,就是日常生活中抽签抓阄的模型。现在我说四句话,大家看看有什么不同,第一句话“求一下第三次取到十件产品有七件正品三件次品,我们每次取一件,取后不放回”,下面我们来求四个类型,第一问我们求第三次取得次品的概率。
第二问我们求第三次才取得次品的概率。第三问已知前两次没有取得次品第三次取到次品。第四问不超过三次取到次品。大家看到这四问的话我想是容易糊涂的,这是四个完全不同的概率,但是你看完以后可能有很多考生认为有的就是一个类型,但实际上是不一样的。
先看第一个“第三次取得次品”,这个概率与前面取得什么和后面取得什么都没有关系,所以这个我们叫绝对概率。第一个概率我想很多考生都知道,这个概率应该是等于十分之三,用古代概率公式或者全概率公式求出来都是十分之三。这个概率改成第四次、第五次取到都是十分之三,就是说这个概率与次数是没有关系的。所以在这里我们可以看出,日常生活中抽签、抓阄从数学上来说是公*的。
拿这个模型来说,第一次取到和第十次取到次品的概率都是十分之三。下面我们再看看第二个概率,第三次才取到次品的概率,这个事件描述的是绩事件,这是概率里重要的概念,改变表示同时发生的概率。但是这个与第三次的概率是容易混淆的,如果表示的可以这样表述,如果用A1表示第一次取到次品,A2表示第二次取到次品,A3是第三次取到次品。
如果A表示第一次不取到次品,B表示第二次不取到次品,C表示第三次不取到次品,求ABC绩事件发生的概率。第三问表示条件概率,已知前两次没有取到次品,第三次取到次品P(C|AB),第三问求的就是一个条件概率。我们看第四问,不超过三次取得次品,这是一个和事件的概率,就是P(A+B+C)。从这个例子大家可以看出,概率论确实对题意的理解非常重要,要把握准确,否则就得不到准确的答案。
3.我概率这块掌握的不够扎实,复习很困难,我应该怎样才能更好的复习概率这部分内容?
答:概率这门学科与别的学科是不太一样的,首先我建议这位同学你可以看一下教育部考试中心一本杂志,专门出了一个针对研究生考试的书,这个里面请我写了一篇文章,里面我举很多例子,你看了之后有一个详细复习方法。概率这门学科与概率统计、微积分是不一样的,它要求对基本概念、基本性质的理解比较强,有个同学跟我说高等数学不存在把题看不懂的问题,但是概率统计的题尤其文字叙述的时候看不懂题,从这个意义上来说同学*常复习时候,只要针对每一个基本概念,要把它准确的`理解,概念要理解准确,通过例子理解概念,通过实际物体理解概念。
例如:比如我们一个盒子一共有十件产品,其中三件次品,七件正品,我们做一个实验,每次只取一件产品,取之后不再放回去,现在我提两个问题:一个是第三次取的次品是什么事件,这个事件就是积事件,第一次没有取到次品,第二次没有取到次品,第三次是取到次品,求这么一个事件的概率,但是换一个问题,我说你求前面两次没有取到次品情况下,第三次取到次品的概率,这个就不是积事件了,我第二个问题是知道了前面两次没有取到次品,这个信息已经知道了,然后问你第三次取到次品概率是多少,这是条件概率,这个信息已经知道了,另外一个事件发生的概率,这叫条件概率,这是容易混淆的。还有绝对概率,拿我们刚才举的例子来讲,如果我让你求第三次取到次品是什么概率,那是绝对事件的概率,这和前面两个又不一样。
举这个例子提醒考生复习时候把这些基本概念搞清楚了,把公式把握了,这个就比较容易了。跟微积分比较起来这里没有什么公式,公式很少。所以我们把基本概念弄清楚以后,计算的技巧比微积分少得多,所以有同学跟我说,他说概率统计这门课程要么就考高分,要么考低分,考中间分数的人很少,这就说明了这种课程的特点。
4.概率的公式非常难背,有什么好方法吗?
答:背下来是基本的要求,概率的公式并不多,但是概率的公式和高等数学的公式相比,仅仅记住它是不够的,比如给一个函数求导数,你会做,因为你知道是求导数,概率问题,比如全概率公式,考试的时候从来没有哪一年是请你用全概率公式求求某概率,所以从分析问题的层面来说概率的要求高一点,但是从计算技巧来说概率的技巧低一些,所以我建议大家结合实际的例子和模型记它。比如二向概率公式,你可以这么记它,记一个模型,把一枚硬币重复抛N次,正面冲上的概率是多少呢?这个公式哪一个符号在实际问题里面是什么东西,这样才是在理解的基础上记忆,当然就不容易忘记了。
5.关于数理统计先阶段复习应该抓哪些?
答:考试要注意,只有数学1和数学3的同学要考数理统计,按照以前考试数学1一般来说考三分之一分数的题,数学3是四分之一,但是仅仅是一个很例外的情况,2003年数学1考了16分的数理统计,但是今年没有考这部分,今年考试这个地方的命题是有一点有失偏颇,我个人的看法为了避免这样的情况,所以这个地方一定要看,一般要考8分左右的题是比较合适的,到底考什么,我可以把这个范围缩的比较小,考这么几种题型,第一个是求统计量的数字特征或者是统计量的分布,统计量大家知道就是样本的函数,样本就是X1X2-Xn,就是期望、方差、系方差,相关系数等等,求统计量的数字特征。
第二个题型,统计量既然是随机变量,当然可以求统计量的分布,2001年数学3是考了,2002年数学3考了,所以这个地方也是重要的题型。其次第三种题型是参数估计,你要会求。要考你背两到三个区间估计的公式就可以了,所以为什么这个地方考的次数最多,每一种方法你都要会做。第四种题型就是对估计量的好坏进行评价,估计是无偏是有效的还是抑制的。2003年就考了一个大题。
另外第五种题型就是假设间接这个地方,这么年以来只考过两次,而且从99年以来练习五年这一章是没有考,但是也正音连续五年没有考,我个人估测2004年在这个上面考一个小题的可能是非常大的,我想同学们这部分花一点点时间看一看它,可能考一个小题,考一个什么题,就是把统计量写出来,你会不会把分布写出来,以填空的方式。另外一种考法,它的只对什么进行检验,对什么参数进行检验,你把统计参数写出来。第三种方法,设计一个问题,把架设检验的十个步骤做出来,第一个步骤是提出架设,第二步写出检验统计量。这个部分也不会出一个大题,应该是以小题的形式出现。
6.数学一概率和统计一般是怎样的分值比例?重点分别是什么?
答:我们1997年实行新大纲以后,除了1997年没有考,数学一从1998年到今年每一年都考到数理统计这块内容,也可以更多的情况下通过大题形式考,这里头大家复习时候应该稍微注意一下,数理统计它的公式特别多,但是本质上全部概括起来,三个动态总体的抽样分布,当总体方向是未知的时候,我们这几年考题表面上考数理统计的问题,有相当一部分考数理统计它在具体计算过程里头的期望和方差的计算问题。所以经常把数理统计和我们数字特征结合起来考,这种情况我认为没有必要过于区分数理统计占怎样的分值比例,本身都是紧密相连的。
7.数理统计中考试重点是什么?参数估计占多大比重?
答:参数估计这部分它占数理统计的一多半内容,参数估计这块应该是最重要的。统计里面第一章就是关于样本还有统计量分布这部分,这部分就是求统计量的数字特征,统计量是随机变量。统计里面有什么题型?一个参数估计,一个求统计量数字特征或者求统计量的分布,统计量是随机变量,任何随机变量都有分布。自然会有这样的题型。求统计量的数字特征,求统计量的分布,然后参数估计,然后估计的标准。统计这个内容对大家来说应该是比较好掌握的,题型比较少,你比较好把这个题做好。
8.数一中假设检验怎么考?参数估计中区间估计的公式是否都要记住?也就是统计量及其分布这些公式很复杂如何更好记忆,历年考试出现的好象不是特别多,今年是否会有变化?
答:区间估计不是考试重点,属于最低层次的,你只要知道两到三个区间公式就可以了,以前只考过前面两个,你多记一个留有一些余地,这个地方要求比较低,复杂的公式你不一定非得记住。
考研数学概率论首轮复习的疑问2
1、点式学习
数学知识由一系列的基本定义基本定理基本方法组成,这些基本的知识点两两结合,三两结合就能构成不同难度,不同层次的考题,但追根究底,若没有对这些小知识点透彻的学习是不可能漂亮求解复杂问题的。所谓“不积跬步无以至千里”就是道理所在。如何才能深刻理解这些知识点的内涵呢?一般也需要分三步:一、这个点在讲什么?二、这个点揭示了什么?三、这个点如何使用?例如,中值定理里有一个拉格朗日中值定理,从以上三个层次理解就是:一、讲切线与两端点连线的问题;二、揭示了导数与函数的内在关系;三、可以用来沟通函数与导数,出现在不等式证明及中值定理证明题目中。
2、线式学习
在掌握好第一步单个知识点的学习后,就好比我们手里有有一把珠子,要想便于携带需要把这些散珠穿起来,这就是线式学习。那么这条穿珠子的线是什么呢?我认为应该是各章节之间的联系。至于如何找到这条线,其实不难,大家手头的教材的编排都是按照一定的逻辑关系进行的,我们只需深刻理解教材的编排方式就可以讲珠子穿起来了。当然,每个人的水*又是不同的,有人理解的深刻,有人理解就浅见一些,不过,只要多下功夫,“读书百遍,其意自现”。
3、面式学习
经过线式学习,我们已经把知识做成了一根根线,现在需要把这些线织起来。线与线之间的联系就需要站高一些来看了,各个章节是要解决什么问题,综合起来又是要解决什么问题,这需要较高的抽象综合能力,分析问题的能力。例如,从整体上看高等数学,首先研究函数极限连续,那这是在说明高等数学研究的对象及使用的工具,以极限的手段研究连续函数;后续研究导数及其应用以及中值定理,这是进入一元函数微分学的,一元函数微分学学清楚了后边多元微分的学习就可以轻松进入,对比学习即可;再者就是一元函数积分学的学习,这是整个积分学的基础,后续多元的积分学,包括二重积分、三重积分、曲线面积分从本质上说要想计算出来都要转化成一元函数的积分来处理等等。
考研数学概率论的题型训练有多重要(扩展9)
——考研数学概率部分考察的特点有哪些
考研数学概率部分考察的特点有哪些1
第一个“识”,就是我们要把考试大纲重头到尾进行梳理一下。我们要对大纲要求的知识,要进行识记,并且要熟练记忆。
这个第一关,看似是最简单最基础,实际上是最难的。对于多数的考生而言,第一关往往是造成失败的主要原因。
比如说数学一,由于考点要求的很多,很多考点,我们主要是记住了它的概念,这样的问题就会迎刃而解。我们不会的原因,并不是因为我们自身的能力不强或者是不够聪明。主要是对这部分内容,我们识记没有过。我们没有记住这些基本的概念和原理。
第二个,就是要“全”,进行全面复习,不留死角。这个建议,主要是针对数学一同学而言的。那也就是说,从2016年的考试情况来看的话,如果我们盲目的猜重点,猜测考点,自己来揣摩哪些地方不考,我们就忽视了,而这些问题,恰恰就会考查出来。所以在后面有限的时间段里面,我们要进行全面的复习。对于*时没有掌握的遗留问题,要进行重点突破。
第三个“识”,就是辨识能力,这个是个质的飞跃,一个能力提升的过程。辨识能力是数学的高层次,也就是说,我们能够识别这个问题是个什么样的问题。像概率里面,数学三独立重复实验。它是伯努利概型,还是几何分布,还是帕斯卡分布。
第四个“美”,就是最高的阶段。很多数学家,他是把数学上升为美学,这是一个哲学范畴的一个概念。就是我们这个试卷,是要解答规范,形式要美观。从去年的阅卷情况来看,在批阅试卷的过程当中,我们在这个试卷里面反映的问题是非常突出的。主要在试卷中体现的问题有几个方面。
第一个方面,就是时间很仓促。很多同学明显看出来最后的题,解答没有时间了,字迹很潦草。因此在解答试卷的.过程当中,我们每个部分要注意时间的分配。
第二个,就是突出的问题,基本概念不清楚。比如说,去年的概率论,这样一个问题,第一问呢,是告诉我们二维随机变量,在一个区域上服从均匀分布,要我们写出它的联合概率密度,所以考生都知道注意这个面积是3,但是就会有一半的考生不会把这个面积倒过来,得到联合概率密度。其实这样的问题,根本不是一个很难的问题,我们只要能够把这个面积倒过来,就会获得联合概率密度。所以,第二个问题,就体现了基本概念不清楚。
第三个问题,在最后这一阶段,很多同学因为数学的难度,对自己没有信心,想要放弃数学,或者是避开数学,其实数学是能够获得高分,使自己与其他人拉开差距的一个中坚力量,也就是说,得数学者可以得天下,如果数学成绩好,他所占有的优势是极巨大的。所以,我们要相信自己的能力,我们数学要尽力争取高分。